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Background

Two-agent zero-sum stochastic game:
- Atuple (S, AP, AP, T, R, y)
- The Player maximizes; the Opponent minimizes
Policy P! (77°P): mapping from § to AP (A°P)
Q-function and value associated with 7 = (7P, 7°P):
07 (s, ¥, a%) = B [L20¥* RS, AV, A 1S5 = 5,4 = P! A = o]

VP (s) = BT TR0yt RS, AT, A45) |5, = 5]
Nash equilibrium:
- A coupled max-min optimization to find (P!, 7°P*):
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- Solved as Linear Programs at each state. Expensive to solve.
max v min u
subjectto v1" = mP!(s)Q"(s) <0 subjectto ul — @%(s)m®" (s) < 0
1"nPl(s) =1, nP'(s) = 0 1™m°P(s) = 1, m°P(s) = 0

Shapley’s method (minimax-Q) iterates between two operators:

- pl op
Q=0 (Q, MNash’ ”Nash)

updates O-estimate based
on computed Nash
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based on Q-estimate

Entropy-Regularized Policy Approximation

Fixed entropy regularization [1]
o
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Closed-form max-min soft solution under regularization
Marginalization:
. 1
O (s.a®) = o o8 Z PP (@®|s)exp(B°PQuce (5. @', a%®))
&
Sofi-Nash Policies:

1
afy (aP']s) = mﬂ""(d”"\s)exp (Borohy (s, a°P))
Two soft operators: inverse temperature dependent
ot pl _op\ _ B . _ B
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computes soft Nash Updates Qy;, with reference p

SNQ2 learns two Q-values simultaneously:
(1) Original Q-value Q
(2) Entropy-regularized Q-value Qy;,

i' Slow Module:
|+ Learns standard Q-value and Nash policies
|« Slow but produces Nash

Fast Module:

* Leamns entropy-regularized Q-value and soft-optimal policies
« Fast but only an approximation of the Nash policies 1

- Coupling of the two Modules:

Use Nash policies from the slow module to update the priors used in the fast

module

Use soft-policies from the fast module to update Q-values in the slow module ::

- Actively adapts entropy regularization
- Reduce inverse temperature f§ over time

Soft Nash Q2 Algorithm

Behavior Policy

Algorithm 1: SNQ2-Learning Algorithm

2 Set

- Update reference policies using Nash policies from original O-estimate 2

22

- Adynamic schedule scheme is introduced to balance the two modules n
- Observes the O-difference between two updates ;‘ end

- Decides when to perform Nash prior updates and reduce inverse temperature 2:

Challenges in convergence analysis:

1 Inputs: Priors p. Learning rates o and #; initial prior update
episode M = AMj: Nash update frequency 77

Q(s,a",a”") = Qgu(s,a",a®) = 0;

3 Set A and 3 to some large values;
4 while Q not converged do

while episode i not end do
Compute 7k (s:) + [F!._(le,./’)] (s¢)s
Collect transition (s,‘u',", a}’, re, 8¢41) where
al' ~ Ry (se), alf ~ mh (se):
if t mod T' == 0 then

| Compute V(s¢11) =

else

Compute
V(sesr) = mfy (se1)T Qsea1) mh(s041) 5

end

Update Q(si, af', a}?) with V(s;4.1) via (13);
Update Qxy (51, al',a}) via (12);

end

if i == M then

Compute nah < I'Nash Qrs
Update priors pnew ¢ Tash}
Update schedule as in Algorithm 3:

AM, Brew = DS (puew, p, 8, AM, Q):
Update next prior update schedule M += AM:
Update priors p < ppews B 4 Buews
Decrease learning rates o and 1);

end

return Q(s,a". a™).

- With decreasing f3, the operators used to update Q-value changes
- Standard fixed-point argument cannot be directly applied

Theorem 1 Let (X, p) be a complete metric space. Let f™: X — X be a family of contraction operators such that for all n = 1,2, ...

Convergence Analysis

max_p mingop, 3o Q(se41, @, a)7" (a[s041):

there exists d™ € (0,1), such that p(f" x, f* y) < d"p(x,y) for all x,y € X. Assume that lim d" = d € (0,1). Let x € X be a
n—oo

starting point and let x™ = f™ --- f1x be the result of sequentially applying the operators f7, ..., f™ to x. If the sequence of operators
{f™}n=1 convergence pointwise to f, then f is also a contraction mapping with contraction factor d. Furthermore, if x* is the fixed

point of f, then for every x € X, lim x™ = x*.
n=co

The convergence of SNQ2 can be shown through the following argument:

- As [ approaches zero, the update rule of SNQ2 converges to Shapley’s method

- Per Theorem 1, SNQ2 converges to the fixed point of Shapley’s method, which is the Nash Q-value

of the game.

Numerical Experiments
Experiments are conducted in Pursuit-Evasion games (PEG),
Sequential Rock-Paper-Scissor (sRPS) and Soccer games

mSNQ2L-U
100% =

SNQ2L-PE m Minimax-Q m Soft-Q ™ WoLF-PHC mSingle-Q

States achieved NE

4X4 PEG 6X6 PEG 8X8 PEG sRPS Soccer

2
States achieved NE

4x4  6X6  8X8  sRPS Soccer 150 500 1200
4x4 PEG Cuttoff Time [s]

» Without updating regularization, two-agent soft-Q [1] failed
to converge to a Nash in sRPS.

» With updating regularization, SNQ2 achieves same level of
convergence as Minimax-Q

» Significant reduction in learning time

» Warm starting (-PE) gives better convergence give the same

cutoff time
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> Similar episode-wise convergence trend as Minimax-Q

» Time-wise trend shows a significant speed up

» Warm starting (-PE) gives a better convergence trend
comparing to uniform prior (-U)

» Dynamic scheduling (DS) improves episode-wise
convergence speed
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